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The Mean Spherical Model in a Random External 
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We provide a quick elementary solution of the mean  spherical model in a 
random external field. This also allows an immediate proof of the self-averaging 
property of the free energy. We calculate the free energy by means  of the replica 
method,  i.e., for any (not necessarily integer) "replica number"  n, and show that 
when a phase transition occurs the limits (limH~0+ lim~v__~o,) and n -~  0 are not 
interchangeable. 
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1. INTRODUCTION 

The spherical model in a random external field (1) is one of the few exactly 
soluble models which exhibit v = 4 as the lower critical dimension for the 
existence of random ferromagnetism. A simple, "one-sentence" solution of 
the model seems therefore desirable. The very general approach of Ref. 1 is, 
however, somewhat abstract. In this note, we provide a quick elementary 
solution of the model, which also allows an immediate proof of the 
self-averaging (2"3) property. The latter is essential to account for the repro- 
ducibility of the outcomes of experiments realized on random systems. We 
also show that the free energy may be computed exactly 3 by the replica 
method (Refs. 2 and 4 and references given there) even if the "number of 
replicas" is not an integer, thereby illustrating some of the general results of 
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Refs. 2 and 4. In particular, if v > 5, and the variance of the external field 
is sufficiently small while the inverse temperature fl is sufficiently large, 
there is a phase transition [1] and the convergence is not thermodynamic [2] 
with respect to the double limit limH__,01imu_,~ (where H is the external 
field, and "N--> m"  denotes the infinite-volume limit). We say that N -1W u 
converges thermodynamically to a, if for any 8 > 0 we can find a constant 
c = e(8) > 0 such that for all sufficiently large N, 

Prob {IN - 1 W  N - og[ > 8 } "~ exp( -- eN)  

Accordingly, it might be expected that the limits ( l im~01imN_~) and n --~ 0 
in the replica method are not interchangeable for some quantities. Indeed, 
this is explicitly verified. 

2. THE MEAN SPHERICAL MODEL 

Let A N  denote a hypercube { - L . . . .  , L)  ~ enclosing N = (2L + 1) ~ 
points in Z ". The Hamiltonian restricted to A N of the mean spherical 
model in a random external field may be written 

HN(qO =(qJ, - -A/2~)  -- /~(~b,~?) -- H ~ ~(x) - (h,~b) (1) 
XEAN 

We denote by boldface characters a general N-component vector whose 
components are labeled by the points of A N. ~b is a classical "spin vector" 
whose components range over ~, /, is the chemical potential, H is the 
(nonrandom) external field, and (-lX) the "lattice Laplacean" 

( - A , ) ( x )  = 2 v ~ ( x ) -  k [ , ( x  + ei) + , ( x  - ei) 3 
i = 1  

where ei, i = 1 , . . . ,  v is a unit vector in the ith direction. The scalar 
product between two vectors y and z is 

( y , z ) =  ~] .p(x)z(x)  
X~AN 

We assume periodic boundary conditions in (1). The vector h is a random 
vector representing the random external field, whose components h(x), 
x E Z ", are assumed to be independent identically distributed random 
variables, with probability distribution p, mean zero, and covariance o: 

(h(x)>p = 0, Vx ~ Z ~ (2) 

<h(x)h(y)>p = o28x,,, x, y ~ Z ~ (3) 

The partition function is defined by 

z u ( B ,  ~,/-/)  = f d , / , e x p [ -  BHx(q, )]  
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where d 0 =- I~x~ANdep(x), and the free energy by 

fu(f i ,  It, H) -- U l~ It, H )  (4) 

The Gibbs expectation value of an observable F(~b) is 

f d0  exp [ - flH N (~) ] r(q~) 
(F>N =- 

Zu( fi, It, H)  

We require ~ to satisfy the spherical constraint 

((g?, O)>N = N (5a) 

or, in terms of It: 

(Of~(fi ,  It, H ) )  = - 1  (5b) 
~It #,H 

Finally, the Fourier transform f of a function f is defined by 

1 ~ e-SkXf(x) V k ~ A } =  L + I  ' x E A  N . 

Let A be a strictly positive matrix. We have 

fdxexp[ - �89 Ax)+ (y,x)] 

- (2~r)N/a exp[ �89 (6) 
(detA)l/2 

By (1) we see that ZN(fl, It, H) is of the form of the left-hand side of (6), 
with the following identifications: 

A = f i ( - - A -  2It) 

y=f iH~ + h ,  ~]~ 

This yields immediately 

fN( fl, it, H ) =  - - -  
-1 fi 1 

f12 log(2cr) + -~-~-tr logA 

+ - ~  +2--~ u~ fi/-/(~,h)- ~N(h,A-'h) (7) 
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T H E  FREE E N E R G Y  

To compute  the averaged free energy we only need 

( ( h , A -  'h ) )  o = ~, (A-  l)xy. (h(x)h(y))  o 
x, y 

= o2trA - I _ 0 2 ~'~ 1 
2/3 ~ ~ , ( ~ )  - 

where 

(8) 

k v 
r  --= (1 - coski), k =--(k;)i= , 

i=1 

The  following results follow almost immediately from (7) and (8) (see Ref, 5 
or 6). If H =~ 0, the equat ion 

(3( fN(f l ' l ' t 'H))p)  = _ l  

has a unique solution/~N(/3, H )  such that 

I~N( /3'H) ~N--->~o [t( /3, n )  

If H =# O, 

p,(fl, H )  < 0 

is the unique solution of the equation 

H 2 / 3 -1  e ( k ~ ) a 2 / d ~ k  1 + - - f d " k  + - -  - 1 (9) 
4/* 2 2(2~') ~ - ~ 4(2*r) * ( r  2 

where B ~ [ -  ~, ~r] ~ is the first Brillouin zone. Fur thermore ,  

lim (fN( fi, I* = I*~v( B,H),H))o= ( f (  fl, I*( fi, H),H))o 
N-~ oo 

where 

( f (  fl, t~, H))o = - -  

(lo) 

H 2 B-' s {log(2~r) , ) ]  212~i. - log[2B(e(k)  - } 

0 2 fBd~k 1 
4(2 ,0  ~ ~(k) - 

( 1 0  
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The quantity 

~H B,t, ~ =t*N(B,H) 

H 
2#u( fl, H)  

is the magnetization. In this way we arrive at our first proposition. 

Proposition 1. If v < 4 

lim I~(fl, H)  =/~(f l ,  O) < 0  
H-->O+ 

and 

lim lim ( m  N ( i~, H ) ) o  = 0 
H~O+ N ~  

(12) 

(13) 

(14) 

If v > 5 and 

o 2 fBd~k 1 
4(2rr) ~ c(k)  2 

then, for fl sufficiently large, 

lim I~ ( fl, H ) = 0 
H--->0 + 

and 

< 1  

(15) 

lira lim (mu( f l ,  H) )o= ~,/~ g=0 (16) 
H--+0 + N ---> m 

We now consider fu ( fl, /*, H )  given by (4) (no averaging). We have 4 

( h , A  - l h )  = 4 (h,  G h )  
/ o  

where 

Hence, if # < 0, 

G = ( - -k  -- 2/,) -1 

exp(2NIx -Yt t )  
IG( x, Y)l < ~ (17) 

Ilx - ylr tp-1)/2 

4 In the following argument we ignore the fact that A, hence G, depends on N, but it is easy to 
verify that the restriction of G to A N (with periodic boundary conditions) also obeys (17) 
(with c independent of N). 
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for Jlx-Yll  large (llxll = ( x ~  + . . ,  + x2) 1/2 if x = (xi)~=l). By (7) and 
(17), fN(B, f~, H) converges with probability 1 to (f(/3, ~t,H))p and the 
convergence is thermodynamic (2) if/~ < 0. The reason is that we may split 
up a large "block" (h, A -Ih) into finitely many independent sub-blocks plus 
an error term which becomes negligibly small as the size of the sub-blocks 
also goes to infinity. In addition 

8fN(~,l~, H) _ ~ ' ~ 1 H 2 
~/~ 2N k~, c(k) - / ~  4/~2 

where 

21-N(h'(G*G)wh)- 2-~flH (~,h) (18) 

( a * a ) ~ ( x  - z) -- y~ C(x  - y ) C ( y  - z) (19) 
y ~ A N  

Clearly, if/z < O, 

[(O*G)u(X)[ < c e x p ( -  (~llxll) (20) 

with a > 0 and c independent of N. It follows easily (see, e.g., Ref. 2) from 
(18) and (20) that 

Ofu(B, ~t,H) 3 ( f ( f i , / , , H ) )  o 
) with probability 1 (21) 

if /~ < 0. For H=/= 0 (5b) has a unique solution ~N(~,H)< 0. A simple 
argument using (18)-(21) shows that, if H =/= 0, 

/~U (/9, n ) ------> /~ (/3, H ) < 0 with probability 1 (22) 
N--~ o~ 

where/~(/9, H)  is the unique solution of (9). Equation (22) has the following 
important consequence: 

Proposition 2, The following statements hold with probability 1. If 
v < 4 ,  

lim lim /.~N(/9, H ) =  /~(/~,0) < 0  
H--->0 + N--> oo 

l i m  l i m  m N (/9,  H ) = 0 
H--~0 + N---~ oo 

and 

If v >/ 5, under the same conditions stated in Proposition 1, 

lira lim t7 n ( f l , H ) = 0  
H - ~ 0 +  N--~ ar 

(23) 
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and 

lim lim m N ( i~, H )  = 3'~ v s 0 
H - + 0 +  N---~ ~ 

[ ]  

9 5  

. T H E  R E P L I C A  M E T H O D  

We now compare the free energy ( f ( f l ,  I~, H))o with the one obtained 
by the replica method. We have to impose the condition (/z < 0) 

i~na 2 
~ + - - -y-  < 0  

and that the probability distribution be Gaussian. Define (4) 

q'N(n) = N log<Z~(fl, /z,H)>p 

B - '  
log<exp[ n l o g Z N (  fi, /~,H)]>. 

N 

For the integers n which satisfy (24) we get 

<Z~v(fi, Iz, H)>p= f dd?, " " " dgp,,exp{-fl[Hn(g?,) + " ' "  + HN(~)]  } 

n 

with 

(24) 

• <e• B(h,+, + . . .  + ~.) ]>,  

(exp[ B(h,+, + ' + < ) ] L  

(25) 

B = 
1 1 . . .  

1 1 . . .  

= n [ ~ > . < . ~ l  

by the assumption that 0 is Gaussian. The matrix involved in (26b) is 

= exp[/~2(~ 1 "Jr" " ' "  "{- ~ n  ' ~ 1  "1- " ' "  "{" 4~n)02/2] ( 2 6 b )  

(26a) 
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Hence there exists an orthogonal matrix 0 -- (0~) such that 

0_IB 0 = 0 . . . 0 

0 . . .  0 

Define 0' = 0-l~.  Then 

~i (Pi~'X~pj(~j but 

�9 0, otherwise 

We may therefore compute the Gaussian integrals in (26). Only the integral 
involving ~] contains H, and it may be computed by the substitution 

H ~  H f s  together with 

I* ~ I~, =- I z + f ino2 /2  (27) 

in the free energy of the (nonrandom) spherical model. Note, however, that 
the integrals (26a) diverge unless/x, < 0, which is (24). We now find 

f i - '  ~,  ( l o g ( 2 ~ r ) - l o g [ 2 f l ( r  ePu(n )=  N k~A~ 

f i - I  - (n- I)~ E. (log(2~r)-log[2fi(c(k) -/~)]) 
k~AN 

2 

+ 4 ~  (28) 

From (28) and (11) we obtain, if H r 0, 

lira d~'u(n)  ~=o-- d lim eoN(n ) ~ = ( f (  fi, ~ , H  ) )  o (29) N~+oo dn dn m ~  =0 

Equation (29) illustrates the interchangeability of the limits N-+ 
and n--+ 0 in the case of thermodynamic convergence. <2) 
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We see from (28) that the replica trick provides the correct answer in 
all cases, not only those satisfying (24). By this we mean that there are 
values of the parameters such that (24) is violated for any integer n and the 
above calculation is meaningless. 

The above "mystery" is solved by computing qSN(n ) exactly for all real 
n which satisfy (24). In fact, the condition (24) arises naturally. We need 
only (6). By a calculation similar to the one which led to (7), we find 

exp[nlogZu( fi, ~ , H ) ]  = exp 4/* 

X exp { nfi 2 

with the same notation as in (7). Hence 

(exp[nlogZu(~, /x ,H)l>0--  exp - (2~ro2)1/2 

•  nil2 

Using (6) once again, 

(exp[nlogZu(fi, /x, H )  ])  0 = exp( - nH2N41 * ) 

X ( (2~ro2)1/2 

(2qr) N/2 

(detA')  1/2 

 exp(  I t 
where 

(30) 

i 0 . . .  0 1 ~ d - n f i 2 A - I  I a =  1 . . .  0 A'=--~ 

0 . . .  1 
provided A' is strictly positive, i.e., (24) is satisfied. We obtain (28) from 
(30) by a straightforward calculation. 
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We see from (28) that ~N and its thermodynamic limit q5 are analytic 
in n for Re n < 0, even if/~ = 0. This confirms and substantiates an earlier 
observation made by van Hemmen and Palmer (unpublished), and redis- 
covered by Eisele. (7) In the spherical model the limit n ~ 0_ (from the left) 
is therefore more natural. Equations (17) and (23) (compare) with Ref. 2) 
indicate that the convergence is not thermodynamic with respect to the 
double limit (limH_,0+limu_~). From Proposition 2 we expect that the 
limits n ~ 0_ and (limH_,0 + limN_.~ ) may not be interchanged (at least for 
some quantities) if v > 5 and the conditions stated in Proposition 1 are 
satisfied, implying that a phase transition takes place and (23) holds. In 
fact, consider the magnetization derived from (28): 

mn,N( fl, H)  ~ 
O~)N (n) nH 

OH 2~. 

nH 
2[ I~N ( fl, H ) + flno2 / 2 ] 

Let d -  denote left derivative. By (31) 

d ~ (  lim lim mn,N(fl, H)) = 0  
dn YH-+O+ N---~oo n=0 

but, by (15) and (16) 

lim lim ( d -  ) = y~ va 0 It~0+ N ~  \--dnn rnn'N( f l ' H )  .=o 

(31) 
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